

ON THE DEVELOPMENT OF A CLASSIFICATION BASED AUTOMATED MOTION IMAGERY INTERPRETABILITY PREDICTION

Hua-mei Chen & Genshe Chen
Intelligent Fusion Technology
Erik Blasch
MOVEJ Analytics

Outline

- A. Why imagery interpretability?
- B. Approach
- C. Experiments
- D. Conclusion

A classification-based motion imagery interpretability prediction estimation accuracy within 0.5 VNIIRS level.

A. Why Imagery Interpretability

- A.1 Imagery quality vs imagery interpretability
 - Quality: overall appearance
 - Interpretability: potential for intelligence task completion

High Quality

Low Interpretability

Low Quality

High Interpretability

A.2 How Do We Quantify Imagery Interpretability?

- Still imagery: National Imagery Interpretability Rating Scale (NIIRS)
- **Motion imagery**: Video-NIIRS or VNIIRS
- Both define a set of different levels of interpretability based on the types of tasks an analyst can perform with imagery of a given rating.
- NIIRS/VNIIRS are subjectively assigned by trained image analysts (IAs)

A3. Image/Video Interpretability Estimation Equations

• General Image Quality Equation V4

$$GIQE_4NIIRS = 10.251 - a \cdot log_{10}(GSD_{GM}) + b \cdot log_{10}(RER_{GM}) - 0.656 \cdot H_{GM} - 0.344 \cdot \frac{G}{SNR}$$

• Instantaneous interpretability estimation for the kth frame:

$$\begin{split} I_k = & \ 14 - log_2 \ (GSD_k) - log_2 (\ 1/\ RER_k) - exp(0.5*(PSNR_c - PSNR_k)) \\ & - \Delta I_{camera} - \Delta I_{contrast} - \Delta I_{movers} - \Delta I_{artifacts} \end{split}$$

Video interpretability equation is **NOT** widely accepted as general image quality equations are.

A4. The Need for A Fully Automated Motion Imagery Interpretability Estimation Approach

- Major geospatial intelligence (GEOINT) source.
- Increasing volumes of motion imagery data.
- Lack of trained image analysts.
- Lack of reliable Image Quality Equations (IQE) for VNIIRS estimation

B. Approach

B.1 Overview

B2. VB Generation

- What is a VB?
- Three tested VB sizes:

$$c \times l \times h \times w = 32 \times 32 \times 16 \times 3$$
,

$$64 \times 64 \times 16 \times 3$$
,

$$64 \times 64 \times 32 \times 3$$

- Input: video clip, output: large number of VBs
- 3d sliding window method is used

B3. VB Selection

- An informative VB should contain sufficient spatial and temporal variations
- Two VB selection criteria are devised
 - Spatial STD test:

$$\delta_{spatial} > Th_{spatial}$$

• Temporal STD test:

$$\delta_{temporal} > Th_{temporal}$$

• Our experiment indicated the improvement due to applying the two criteria was not significant.

B4. VB Classification

Based on C3D

input size = $112 \times 112 \times 16 \times 3$

- Our implementation
 - Modified the number of convolutional layers to fit specific **VB** sizes
 - Added batch normalization, dropout, and incorporated residual blocks
 - Class number = 9, corresponding to VNIIRS 7, 7.5, 8,...,11.

B5. VNIIRS Prediction

- For each input video clip, the output of VB classification is a **histogram**
- Estimated VNIIRS = Weighted average

C. Experiments

C.1 Data Set

- Training set: sixty-six HD aerial video clips
- Test set: ten HD aerial video clips
- VNIIRS range: 7 to 11

Table 1.Information of Video Clips Used in the Experiments.					
Clip Length	Frame Size (width × height)	Frame Rate (fps)			
10 seconds	1920×1080	25			

C2. Data Preparation

- Each training clip
 - assigned a group label from G14 to G22
 - based on its ground truth VNIIRS level
- Example:
 - VNIIRS = 7.8 → nearest half integer = 8 → label G16
 - VNIIRS in G16 ranges from 7.75 to 8.25

C3. Experiment 1: Performance Comparison of Two Spatial Extents

- Tested two VB sizes: $64 \times 64 \times 16 \times 3$ and $32 \times 32 \times 16 \times 3$
- Cares are paid to use the same C3D variant and the same training VBs.

C3. Experiment 1: Result

Video Block	Total # of VBs	Mean Error	STD	
64×64×16	22984	0.67	0.35	
32×32×16	91936 (22984×4)	0.86	0.34	

C4. Experiment 2: Performance Comparison of Two Temporal Extents

- Tested two VB sizes: $64 \times 64 \times 16 \times 3$ and $64 \times 64 \times 32 \times 3$
- Use the same VBs.
- Different C3D variants
 were developed due to
 different input data sizes
- Experiment repeated three times (3 classifiers)
- Also tested different number of VB during testing phase.

C4. Experiment 2: Graphic Result

BLUE: 40 test VBs

RED: Ground Truth

GREEN: 100 test VBs

Length 16

Length 32

C4. Experiment 2: Numerical Result

VB Length	# of VBs	Avg. Error	Avg. STD	Avg. Error	Avg. STD
		(40 VBs)	(40 VBs)	(100 VBs)	(100 VBs)
32-1	23308	0.650	0.694	0.509	0.385
32-2	23308	0.560	0.561	0.410	0.260
32-3	23308	0.709	0.720	0.481	0.371
16-1	46616	0.689	0.503	0.538	0.380
16-2	46616	0.649	0.596	0.830	0.731
16-3	46616	0.681	0.477	0.560	0.378

- 1. Length 32 performs better than length 16
- 2. Estimation accuracy is about 0.5 VNIIRS level
- 3. 100 VBs for testing performs 40 VBs for testing in general
- 4. Performance variation is observed for each C3D variant

C4. Experiment 2: Numerical Result

VB Length	# of VBs	Avg. Error	Avg. STD	Avg. Error	Avg. STD
		(40 VBs)	(40 VBs)	(100 VBs)	(100 VBs)
32-1	23308	0.650	0.694	0.509	0.385
32-2	23308	0.560	0.561	0.410	0.260
32-3	23308	0.709	0.720	0.481	0.371
16-1	46616	0.689	0.503	0.538	0.380
16-2	46616	0.649	0.596	0.830	0.731
16-3	46616	0.681	0.477	0.560	0.378

- 1. Length 32 performs better than length 16
- 2. Estimation accuracy is about 0.5 VNIIRS level
- 3. 100 VBs for testing performs 40 VBs for testing in general
- 4. Performance variation is observed for each C3D variant

C4. Experiment 2: Numerical Result

# of VBs	Avg. Error	Avg. STD	Avg. Error	Avg. STD
	(40 VBs)	(40 VBs)	(100 VBs)	(100 VBs)
23308	0.650	0.694	0.509	0.385
23308	0.560	0.561	0.410	0.260
23308	0.709	0.720	0.481	0.371
46616	0.689	0.503	0.538	0.380
46616	0.649	0.596	0.830	0.731
46616	0.681	0.477	0.560	0.378
	23308 23308 23308 46616 46616	(40 VBs) 23308 0.650 23308 0.560 23308 0.709 46616 0.689 46616 0.649	(40 VBs) (40 VBs) 23308 0.650 0.694 23308 0.560 0.561 23308 0.709 0.720 46616 0.689 0.503 46616 0.649 0.596	(40 VBs) (40 VBs) (100 VBs) 23308 0.650 0.694 0.509 23308 0.560 0.561 0.410 23308 0.709 0.720 0.481 46616 0.689 0.503 0.538 46616 0.649 0.596 0.830

- 1. Length 32 performs better than length 16
- 2. Estimation accuracy achieved is about 0.5 VNIIRS level
- 3. 100 VBs for testing performs 40 VBs for testing in general
- 4. Performance variation is observed for each C3D variant

C5. Experiment 3: Test the Effectiveness of Both VB Selection Criteria

Pass both VB criteria vs Fail both VB criteria

```
\delta_{spatial} > Th_{spatial} \delta_{spatial} < Th_{spatial} \delta_{temporal} > Th_{temporal} VS \delta_{temporal} < Th_{temporal}
```

- Tested employing more VBs in the test phase
- VB size was $64 \times 64 \times 32 \times 3$

C5. Experiment 3: Numerical Results

VB	# of VBs	Avg. Error	Avg. STD	Avg. Error	Avg. STD
Selection		(230 VBs)	(230 VBs)	(100 VBs)	(100 VBs)
Tests					
Pass - 1	23308	n/a	n/a	0.509	0.385
Pass-2	23308	n/a	n/a	0.410	0.260
Pass - 3	23308	n/a	n/a	0.481	0.371
Fail – 1	18904	0.420	0.340	0.461	0.307
Fail - 2	18904	0.617	0.691	0.897	0.814
Fail – 3	18904	0.423	0.518	0.593	0.561

- No significant difference is observed between using the VBs that pass both criteria and those that fail both criteria
- Using 230 VBs for testing outperformed using 100 VBs for testing

D. Conclusion

- Motion imagery interpretability is about the potential for intelligence task completion
- VNIIRS is defined to quantify motion imagery interpretability
- Subjectively rating motion imagery interpretability is costly and inefficient
- A classification-based motion imagery interpretability approach is demonstrated
- Estimation accuracy within 0.5 VNIIRS level is achieved
- More data and experiments are needed to consolidate and verify the findings reported in this work

